36 research outputs found

    Polynomial Time Algorithm for Min-Ranks of Graphs with Simple Tree Structures

    Full text link
    The min-rank of a graph was introduced by Haemers (1978) to bound the Shannon capacity of a graph. This parameter of a graph has recently gained much more attention from the research community after the work of Bar-Yossef et al. (2006). In their paper, it was shown that the min-rank of a graph G characterizes the optimal scalar linear solution of an instance of the Index Coding with Side Information (ICSI) problem described by the graph G. It was shown by Peeters (1996) that computing the min-rank of a general graph is an NP-hard problem. There are very few known families of graphs whose min-ranks can be found in polynomial time. In this work, we introduce a new family of graphs with efficiently computed min-ranks. Specifically, we establish a polynomial time dynamic programming algorithm to compute the min-ranks of graphs having simple tree structures. Intuitively, such graphs are obtained by gluing together, in a tree-like structure, any set of graphs for which the min-ranks can be determined in polynomial time. A polynomial time algorithm to recognize such graphs is also proposed.Comment: Accepted by Algorithmica, 30 page

    Weakly Secure MDS Codes for Simple Multiple Access Networks

    Full text link
    We consider a simple multiple access network (SMAN), where kk sources of unit rates transmit their data to a common sink via nn relays. Each relay is connected to the sink and to certain sources. A coding scheme (for the relays) is weakly secure if a passive adversary who eavesdrops on less than kk relay-sink links cannot reconstruct the data from each source. We show that there exists a weakly secure maximum distance separable (MDS) coding scheme for the relays if and only if every subset of β„“\ell relays must be collectively connected to at least β„“+1\ell+1 sources, for all 0<β„“<k0 < \ell < k. Moreover, we prove that this condition can be verified in polynomial time in nn and kk. Finally, given a SMAN satisfying the aforementioned condition, we provide another polynomial time algorithm to trim the network until it has a sparsest set of source-relay links that still supports a weakly secure MDS coding scheme.Comment: Accepted at ISIT'1

    On the Existence of MDS Codes Over Small Fields With Constrained Generator Matrices

    Full text link
    We study the existence over small fields of Maximum Distance Separable (MDS) codes with generator matrices having specified supports (i.e. having specified locations of zero entries). This problem unifies and simplifies the problems posed in recent works of Yan and Sprintson (NetCod'13) on weakly secure cooperative data exchange, of Halbawi et al. (arxiv'13) on distributed Reed-Solomon codes for simple multiple access networks, and of Dau et al. (ISIT'13) on MDS codes with balanced and sparse generator matrices. We conjecture that there exist such [n,k]q[n,k]_q MDS codes as long as qβ‰₯n+kβˆ’1q \geq n + k - 1, if the specified supports of the generator matrices satisfy the so-called MDS condition, which can be verified in polynomial time. We propose a combinatorial approach to tackle the conjecture, and prove that the conjecture holds for a special case when the sets of zero coordinates of rows of the generator matrix share with each other (pairwise) at most one common element. Based on our numerical result, the conjecture is also verified for all k≀7k \leq 7. Our approach is based on a novel generalization of the well-known Hall's marriage theorem, which allows (overlapping) multiple representatives instead of a single representative for each subset.Comment: 8 page

    Balanced Sparsest Generator Matrices for MDS Codes

    Full text link
    We show that given nn and kk, for qq sufficiently large, there always exists an [n,k]q[n, k]_q MDS code that has a generator matrix GG satisfying the following two conditions: (C1) Sparsest: each row of GG has Hamming weight nβˆ’k+1n - k + 1; (C2) Balanced: Hamming weights of the columns of GG differ from each other by at most one.Comment: 5 page

    On the Security of Index Coding with Side Information

    Full text link
    Security aspects of the Index Coding with Side Information (ICSI) problem are investigated. Building on the results of Bar-Yossef et al. (2006), the properties of linear index codes are further explored. The notion of weak security, considered by Bhattad and Narayanan (2005) in the context of network coding, is generalized to block security. It is shown that the linear index code based on a matrix LL, whose column space code C(L)C(L) has length nn, minimum distance dd and dual distance dβŠ₯d^\perp, is (dβˆ’1βˆ’t)(d-1-t)-block secure (and hence also weakly secure) if the adversary knows in advance t≀dβˆ’2t \leq d-2 messages, and is completely insecure if the adversary knows in advance more than nβˆ’dn - d messages. Strong security is examined under the conditions that the adversary: (i) possesses tt messages in advance; (ii) eavesdrops at most ΞΌ\mu transmissions; (iii) corrupts at most Ξ΄\delta transmissions. We prove that for sufficiently large qq, an optimal linear index code which is strongly secure against such an adversary has length ΞΊq+ΞΌ+2Ξ΄\kappa_q+\mu+2\delta. Here ΞΊq\kappa_q is a generalization of the min-rank over FqF_q of the side information graph for the ICSI problem in its original formulation in the work of Bar- Yossef et al.Comment: 14 page
    corecore